Реполяризация физиология это

Реполяризация физиология это

В основе всех физиологических реакций лежит способность живых клеток реагировать на раздражитель. Раздражитель – любое изменение внешней или внутренней среды, которое действует на клетку или многоклеточную систему (ткань, организм).

Раздражители

По природе раздражители подразделяют на:
• физические (звук, свет, температура, вибрация, осмотическое давление), особое значение для биологических систем имеют электрические раздражители;
• химические (ионы, гормоны, нейромедиаторы, пептиды, ксенобиотики);
• информационные (голосовые команды, условные знаки, условные стимулы).

По биологическому значению раздражители подразделяют на:
• адекватные – раздражители, для восприятия которых биологическая система имеет специальные приспособления;
• неадекватные – раздражители, не соответствующие природной специализации рецепторных клеток, на которые они действуют.

Раздражитель вызывает возбуждение только в том случае, если он достаточно силен. Порог возбуждения – минимальная сила раздражителя, достаточная для того, чтобы вызвать возбуждение клетки. Выражение «порог возбуждения» имеет несколько синонимов: порог раздражения, пороговая сила раздражителя, порог силы.

Возбуждение как активная реакция клетки на раздражитель

Реакция клетки на внешнее воздействие (раздражение) отличается от реакции небиологических систем следующими особенностями:
• энергией для реакции клетки служит не энергия раздражителя, а энергия, образующаяся в результате метаболизма в самой биологической системе;
• сила и форма реакции клетки не определяется силой и формой внешнего воздействия (если сила раздражителя выше пороговой).

В некоторых специализированных клетках реакция на раздражитель проявляется особенно интенсивно. Такую интенсивную реакцию называют возбуждением. Возбуждение – активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.

Возбудимая клетка может находиться в двух дискретных состояниях:
• состоянии покоя (готовность к реагированию на внешнее воздействие, совершение внутренней работы);
• состоянии возбуждения (активное выполнение специфических функций, совершение внешней работы).

В организме существует 3 типа возбудимых клеток:
• нервные клетки (возбуждение проявляется генерацией электрического импульса);
• мышечные клетки (возбуждение проявляется сокращением);
• секреторные клетки (возбуждение проявляется выбросом в межклеточное пространство биологически активных веществ).

Возбудимость – способность клетки переходить из состояния покоя в состояние возбуждения при действии раздражителя. Разные клетки имеют различную возбудимость. Возбудимость одной и той же клетки меняется в зависимости от ее функционального состояния.

Возбудимая клетка в состоянии покоя

Мембрана возбудимой клетки поляризована. Это означает, что имеется постоянная разность потенциалов между внутренней и наружной поверхностью клеточной мембраны, которую называют мембранный потенциал (МП). В состоянии покоя величина МП составляет –60…–90 мВ (внутренняя сторона мембраны заряжена отрицательно относительно наружной). Значение МП клетки в состоянии покоя называют потенциалом покоя (ПП). МП клетки можно измерять, разместив один электрод внутри, а другой снаружи клетки (рис. 1 А ) .

Рис. 1. Схема регистрации мембранного потенциала клетки (А); мембранный потенциал клетки в состоянии покоя и его возможные изменения (Б).

Уменьшение МП относительно его нормального уровня (ПП) называют деполяризацией , а увеличение – гиперполяризацией . Под реполяризацией понимают восстановление исходного уровня МП после его изменения (см. рис. 1 Б).

Электрические и физиологические проявления возбуждения

Рассмотрим различные проявления возбуждения на примере раздражения клетки электрическим током (рис. 2).

Рис. 2. Изменение мембранного потенциала клетки (А) при действии электрического тока различной силы (Б).

При действии слабых (подпороговых) импульсов электрического тока в клетке развивается электротонический потенциал. Электротонический потенциал (ЭП) – сдвиг мембранного потенциала клетки, вызываемый действием постоянного электрического тока . ЭП есть пассивная реакция клетки на электрический раздражитель; состояние ионных каналов и транспорт ионов при этом не изменяется. ЭП не проявляется физиологической реакцией клетки. Поэтому ЭП не является возбуждением.

При действии более сильного подпорогового тока возникает более пролонгированный сдвиг МП – локальный ответ. Локальный ответ (ЛО) – активная реакция клетки на электрический раздражитель, однако состояние ионных каналов и транспорт ионов при этом изменяется незначительно. ЛО не проявляется заметной физиологической реакцией клетки. ЛО называют местным возбуждением , так как это возбуждение не распространяется по мембранам возбудимых клеток.

При действии порогового и сверхпорогового тока в клетке развивается потенциал действия (ПД). ПД характеризуется тем, что значение МП клетки очень быстро уменьшается до 0 (деполяризация), а затем мембранный потенциал приобретает положительное значение (+20…+30 мВ), т. е. внутренняя сторона мембраны заряжается положительно относительно наружной. Затем значение МП быстро возвращается к исходному уровню. Сильная деполяризация клеточной мембраны во время ПД приводит к развитию физиологических проявлений возбуждения (сокращение, секреция и др.). ПД называют распространяющимся возбуждением , поскольку, возникнув в одном участке мембраны, он быстро распространяется во все стороны.

Механизм развития ПД практически одинаков для всех возбудимых клеток. Механизм сопряжения электрических и физиологических проявлений возбуждения различен для разных типов возбудимых клеток (сопряжение возбуждения и сокращения, сопряжение возбуждения и секреции).

Устройство клеточной мембраны возбудимой клетки

В механизмах развития возбуждения участвуют 4 вида ионов: K+ , Na+ , Ca++ , Cl – (ионы Ca++ участвуют в процессах возбуждения некоторых клеток, например кардиомиоцитов, а ионы Cl – важны для развития торможения). Мембрана клетки, представляющая собой липидный бислой, непроницаема для этих ионов. В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы.

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+ ), Ca++ помпу (откачивает из клетки Ca++ ), Cl– помпу (откачивает из клетки Cl – ).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:
• концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
• концентрация K+ внутри клетки выше, чем снаружи.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы обладают следующими свойствами:
• пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
• всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами:
• пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
• могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром , который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

Рис. 3. Состояния селективного ионного канала и условия перехода между ними.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
• хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
• потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение МП (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

Механизм формирования потенциала покоя

Мембранный потенциал покоя образуется главным образом благодаря выходу К+ из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

Мембранный потенциал, возникающий в результате утечки К+ , называют «равновесным калиевым потенциалом» (Ек). Его можно рассчитать по равнению Нернста

где R – универсальная газовая постоянная,
Т – температура (по Кельвину),
F – число Фарадея,
[К+] нар – концентрация ионов К+ снаружи клетки,
[К+] вн – концентрация ионов К+ внутри клетки.

ПП, как правило, очень близок к Ек, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

• поступление в клетку Na+ и Cl– через неселективные ионные каналы; при этом поступление в клетку Cl– дополнительно гиперполяризует мембрану, а поступление Na+ – дополнительно деполяризует ее; вклад этих ионов в формирование ПП невелик, так как проницаемость неселективных каналов для Cl– и Na + в 2,5 и 25 раза ниже, чем для К+ ;

• прямой электрогенный эффект Na+ /К+ ионного насоса, возникающий в том случае, если ионный насос работает асимметрично (количество переносимых в клетку ионов K+ не равно количеству выносимых из клетки ионов Na+).

Механизм развития потенциала действия

В потенциале действия выделяют несколько фаз (рис. 4):

• фаза деполяризации;
• фаза быстрой реполяризации;
• фаза медленной реполяризации (отрицательный следовый потен­циал);
• фаза гиперполяризации (положительный следовый потенциал).

Рис. 2.4. Изменение мембран-ного потенциала, интенсивности калиевого и натриевого трансмембранного тока и возбудимости клетки в разные фазы потенциала действия.

Д – фаза деполяризации, Рб – фаза быстрой реполяризации, Рм – фаза медленной реполяризации, Г – фаза гиперполяризации;

Н – период нормальной возбудимости, Ра – период абсолютной рефрактерности, Ро – период относительной рефрактерности, Н+ – период супернормальной возбудимости, Н- – период субнормальной возбудимости

Фаза деполяризации. Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

Изменение возбудимости клетки при развитии возбуждения

Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки (см. рис. 4).

• Супернормальная возбудимость ( экзальтация ) – состояние клетки, в котором ее возбудимость выше нормальной. Супернормальная возбудимость наблюдается во время начальной деполяризации и во время фазы медленной реполяризации. Повышение возбудимости клетки в эти фазы ПД обусловлено снижением порогового потенциала по сравнению с нормой.

• Абсолютная рефрактерность – состояние клетки, в котором ее возбудимость падает до нуля. Никакой, даже самый сильный, раздражитель не может вызвать дополнительного возбуждения клетки. Во время фазы деполяризации клетка невозбудима, поскольку все ее Na+ -каналы уже находятся в открытом состоянии.

• Относительная рефрактерность – состояние, в котором возбуди­мость клетки значительно ниже нормальной; только очень сильные раздражители могут вызвать возбуждение клетки. Во время фазы реполяризации каналы возвращаются в закрытое состояние и возбудимость клетки постепенно восстанавливается.

• Субнормальная возбудимость характеризуется незначительным снижением возбудимости клетки ниже нормального уровня. Это уменьшение возбудимости происходит вследствие возрастания порогового потенциала во время фазы гиперполяризации.

Читайте также:  Разрыв брюшной аорты симптомы

Физиология сердца. Электрофизиология сердца. Реполяризация желудочков

Основы электрофизиологии

Ритмические сокращения сердца обеспечиваются последователь­ным прохождением электрического импульса по проводящей системе сердца. В норме электрический импульс, вызывающий сердечное сокра­щение, вырабатывается в синоатриальном узле, распространяется в мышце предсердия через межклеточные контактные мостики — вставоч­ные диски, которые обеспечивают непрерывность распространения им­пульса между клетками и достигают А — В узла.

Рефрактерные периоды (РП) кардиомиоцита

В связи с тем, что предсердно-желудочковые клапаны окружает фиброзная ткань, распространение электрических импульсов от предсер­дий к желудочкам возможно только через А — В узел. Как только электри­ческий импульс достигает А — В узла, происходит задержка его дальней­шего проведения на 0,1 секунды. Эта задержка объясняется проведением импульса через А — В узел по медленным каналам.

Пауза в проведении импульса полезна

  • т.к. она дает предсердиям время для их сокращения до начала возбужде­ния и сокращения желудочков;
  • задержка позволяет А — В узлу выполнить функцию привратника, препят­ствуя проведению слишком частых импульсов от предсердий к желудочкам при предсердных тахикардиях.

Выйдя из А — В узла, сердечный потенциал действия распространяется по системе Гиса — Пуркинье к основной массе клеток миокарда, что обеспе­чивает координированное сокращение кардиомиоцитов.
В основе проведения электрических импульсов по проводящей системе сердца, сокращения миокарда лежат процессы электрической стимуляции клеток с формированием потенциала возбуждения, который образуется за счет ионных токов через специальные каналы сарколеммы; то есть деполяризации и реполяризации клеток.
В состоянии покоя внутри клетки концентрация катионов калия в 30 — 35 раз выше, чем в межклеточной жидкости, а концентрация натрия в 10 — 20 раз меньше. В состоянии покоя открыты лишь калиевые каналы, по которым К+ выходит из клетки, а поскольку внутри клетки они связаны с белковыми комплексами, имеющими отрицательный заряд, то, при вы­ходе калия из клетки, внутренняя мембрана приобретает отрицательный заряд, а наружные — положительный заряд. Равновесие противоположных зарядов внешней и внутренней сторон мембраны клетки называется ста­тической поляризацией. Разность потенциалов между внутренней и внешней мембраной клетки составляет — 90 МВ и называется потенциа­лом покоя. Любое воздействие, которое делает заряд мембраны еще ме­нее отрицательным (например, образовавшийся спонтанно импульс С — А узла) приводит к открытию натриевых каналов и входу Na+ внутрь клетки. При этом внутренняя поверхность мембраны становится положи­тельно заряженной, а внешняя отрицательно — происходит деполяризация клеточной мембраны. Электрический потенциал, возникающий в момент возбуждения клетки, называют потенциал действия. После фазы деполя­ризации клеточной мембраны следует реполяризация

При реполяризации К+ выходит из клетки, Са входит в клетку, и внутренняя сторона клеточной мембраны вновь приобретает отрицатель­ный заряд, а внешняя положительный. Фаза реполяризации переходит в фазу покоя — включаются АТФ — зависимые (энергопотребляемые) Na+/К+ и кальциевые насосы, восстанавливающие нормальные трансмембранные градиенты ионов внутри и вне клетки.
Некоторые сердечные клетки не нуждаются во внешних стиму­лах, а сами способны инициировать деполяризацию (возбуждение) — это пейсмекерные клетки. Они обладают автоматизмом — способностью к спонтанной деполяризации. Наиболее широко они представлены в С — А узле, далее А — В узле и системе Гиса — Пуркинье — соответственно водители ритма I — ого, II — ого и III — го порядка.


Схема потенциала действия (ПД) миоцита и ионные токи для Na+, Ca++, и К+

Рассмотрите данный рисунок. Потенци­ал покоя представлен фазой 4 потен­циала действия. После деполяризации проникновение Na+ внутрь клетки приводит к быстрому наступле­нию фазы 0; выход тока калия наружу обусловли­вает частичную реполяризацию во время фазы 1; медленное проникновение Са++ внутрь (и отно­сительно медленный выход К+ из клетки) приводит к временному выравниванию напряжения (плато на ри­сунке) — фаза 2; завершающая быстрая реполяризация обусловлена в ос­новном выходом К+ во время фазы 3

При входе кальция внутрь кардиомиоцита во время возбуждения становится возможным взаимодействие актина и миозина — сократитель­ных белков, что приводит к сокращению клеток и миокарда в целом. Для полноценного расслабления миокарда Са закачивается в саркоплазмати­ческий ретикулум с помощью «Са+/насоса» и удаляется из клетки.

Во время абсолютного рефрактер­ного периода (АРП) клетка не­чувствительна к стимуляции. Эффективный рефрактерный период по­мимо АРП включает короткий период, в течение которого стимуляция вызывает локальную деполяризацию, которая не способна распростра­няться. Во время относительно­го рефрактерного периода стимуляция вызывает слабый потенциал действия (ПД), который распространяется дальше, но более медленно, чем обычный.

В периоде сверхнормальной возбудимости более слабые стимулы, чем в норме, могут вызывать ПД.

Рефрактерный период — период, во время которого клетки не вос­приимчивы к повторным стимулам. Выделяют абсолютно рефрактерный период, когда клетки полностью нечувствительны к новым стимулам и относительно рефрактерный период, когда возникновение потенциала действия (возбуждение, ответ) клетки возможно под воздействием более сильного раздражителя.

После относительно — рефрактерного периода выделяют период сверх нормальной возбудимости, в которой раздражители даже меньшей силы способны вызвать ответ. Это так называемый уязвимый период, ко­гда могут возникать ранние экстрасистолы и другие жизнеопасные нару­шения сердечного ритма.

Рефрактерный период клеток предсердия ко­роче, чем клеток миокарда желудочков, поэтому ритм предсердий может значительно превышать частоты сокращений желудочков
Источник: Лешаков С.Ю. Неотложные состояния в кардиологии (2005)

Общая физиология возбудимых тканей Лекция 1

Раздражимость – свойство всех живых клеток: способность отвечать на действие раздражителя (изменение метаболизма, движение, деление клеток и др.).

Возбудимость – способность клеток отвечать не действие раздражителя возбуждением (т.е.генерацией потенциала действия). К возбудимым тканям относятся нервная и мышечная.

Возбуждение – ответ возбудимой клетки на действие раздражителя (потенциал действия).

Раздражитель – изменение внешней или внутренней среды, которое действует на клетку и вызывает ответную реакцию. Раздражитель может быть: (1) химический, электрический, механический и др., (2) пороговый, сверхпороговый, подпороговый; (3) адекватный и неадекватный и т.д.

МЕМБРАННО-ИОННАЯ ТЕОРИЯ ВОЗБУЖДЕНИЯ.

Мембранные потенциалы создаются за счет движения ионов через клеточную мембрану.

Мембрана – двойной слой фосфолипидов – проницаема для жирорастворимых веществ (СО2, О2, спирт, эфир, стероидные гормоны и др.) и непроницаема для водорастворимых веществ, в том числе для ионов. Для движения ионов в мембране существуют специальные белковые структуры.

Ионные каналы – поры в мембране, стенки которых образованы белковыми молекулами. Через ионные каналы происходит диффузия ионов. Движущей силой для диффузии ионов является (1) концентрационный градиент и (2) электрический градиент. Диффузия происходит без затрат энергии АТФ и называется пассивным транспортом (движение ионов из области с большей концентрацией в область с меньшей концентрацией данных ионов). Ионные каналы бывают нерегулируемые (всегда открыты) и регулируемые (могут быть открыты или закрыты).

Ионные насосы – белковые молекулы-переносчики, которые обеспечивают активный транспорт ионов с затратами энергии АТФ (движение ионов из области с меньшей концентрацией в область с большей концентрацией ионов). Например, калий-натриевый насос (К-Na-АТФаза) имеется в мембране всех живых клеток и переносит ионы калия в клетку, а ионы натрия – из клетки. Поэтому в клетках всегда концентрация ионов калия выше, чем в тканевой жидкости, а концентрация ионов натрия к клетке всегда ниже, чем в тканевой жидкости. Функция К-Na-насоса – создавать и поддерживать градиенты концентраций ионов!

ПОТЕНЦИАЛ ПОКОЯ (ПП)

разность потенциалов, которая существует между внутренней поверхностью клеточной мембраны (-) и наружной поверхностью клеточной мембраны (+) в покое. Эту разность потенциалов можно измерить с помощью микроэлектрода, который вводится в клетку (активный электрод), в то время как второй электрод большей площади остается во внеклеточной среде (пассивный электрод, нулевой, электрод сравнения). Потенциал покоя равен (-30 мв) – (-90 мв) в клетках разных тканей.

Механизм формирования ПП. Необходимы два условия: (1) разная концентрация ионов в клетке и в тканевой жидкости и (2) разная проницаемость мембраны для разных ионов.

В покое проницаемость клеточной мембраны для калия в десятки раз больше, чем для натрия. Поэтому происходит выход ионов калия из клетки (диффузия из большей концентрации в меньшую). Ионы калия, выходя из клетки, заряжают наружную поверхность мембраны положительно, а крупные органические анионы, оставаясь в клетке, заряжают внутреннюю поверхность мембраны отрицательно. Чем больше разность концентраций калия, тем больше разность потенциалов (закон Нернста).

Примечание: В покое проницаемость клеточной мембраны для натрия очень низкая. Тем не менее, это приводит к постоянной утечке ионов: небольшое количество ионов натрия проникает в клетку и вытесняет небольшое количество ионов калия из клетки. Утечке ионов противодействует постоянная работа К-Na-насосов: на 1 канал утечки приходится 100 насосных молекул (которые возвращают калий в клетку, а натрий вывадят из клетки). Если работу насосов прекратить, концентрации ионов выравниваются через несколько минут за счет утечки ионов. Мембранные потенциалы при этом равны нулю, функции клеток нарушаются.

ПОТЕНЦИАЛ ДЕЙСТВИЯ (ПД)

быстрое изменение мембранного потенциала под действием раздражителя.

Фазы потенциала действия: (а) деполяризация (медленная, затем быстрая), (б) инверсия потенциала, (в) реполяризация; затем могут быть следовые потенциалы (следовая деполяризация, следовая гиперполяризация.

Деполяризация – это уменьшение мембранного потенциала покоя (уменьшение величины отрицательного заряда на внутренней поверхности мембраны, напрмер, от -70 мв до 0).

Инверсия – изменение знака заряда на противоположный.

Реполяризация – восстановление исходного мембранного потенциала покоя.

Гиперполяризация – это увеличение мембранного потенциала по сравнению с уровнем ПП (увеличение отрицательного заряда на внутренней поверхности мембраны, например, от -70 мв до -100 мв)

Механизм возникновения ПД: (1) Под действием раздражителя увеличивается проницаемость клеточной мембраны для ионов натрия (открываются быстрые потенциал-чувствительные натриевые каналы). (2) Начинается диффузия ионов натрия в клетку за счет электрохимического градиента (пассивный транспорт). (3) Ток натрия в клетку вызывает деполяризацию клеточной мембраны, а затем и инверсию мембранного потенциала (до +30 мв). (4) К моменту инверсии потенциала натриевый ток прекращается (быстрые натриевые каналы инактивируются). (5) Увеличивается проницаемость клеточной мембраны для ионов калия (открываются медленные потенциал-чувствительные калиевые каналы). (6) Происходит диффузия ионов калия из клетки за счет электрохимического градиента (пассивный транспорт). (7) Ток калия из клетки вызывает реполяризацию и устанавливается потенциал покоя.

Продолжительность ПД – несколько миллисекунд; амплитуда ПД – 100-120 милливольт.

(Смотри схему ПД в учебнике, научись рисовать схему ПД самостоятельно!)

Восстановительный период: (а) восстанавливается исходный потенциал покоя; (б) восстанавливается исходное состояние натриевых и калиевых каналов; (в) восстанавливаются градиенты концентраций калия и натрия (за счет усиленной работы К-Na-насосов).

Быстрые потенциал-чувствительные натриевые каналы – имеют двое ворот: активационные и инактивационные. В покое активационные ворота закрыты, инактивационные открыты.Деполяризация вызывает быструю активацию натриевых каналов (открываются активационные ворота, инактивационные ворота тоже еще открыты). Канал открыт, натрий поступает в клетку. Затем происходит инактивация натриевых каналов, т.к. закрываются инактивационные ворота. За время реполяризации натриевые каналы должны вернуться в исходное состояние, характерное для ПП.

Медленные потенциал-чувствительные калиевые каналы – имеют только одни ворота. В покое эти ворота закрыты. Деполяризация вызывает медленную активацию калиевых каналов (открываются ворота). К концу реполяризации и сразу после нее ворота в калиевых каналах закрываются.

БИОЛОГИЧЕСКИЙ ОТДЕЛ ЦЕНТРА ПЕДАГОГИЧЕСКОГО МАСТЕРСТВА

Потенциал покоя и потенциал действия

Автор статьи Зыбина А.М.

Мембрана всех живых клеток поляризована. Внутренняя сторона мембраны несет отрицательный заряд по сравнению с межклеточным пространством (рис. 1). Величина заряда, который несет мембрана называется мембранным потенциалом (МП). В невозбудимых тканях МП низкий, и составляет около -40 мВ. В возбудимых тканях он высокий, около -60 – -100 мВ и называется потенциалом покоя (ПП).

Потенциал покоя, как и любой мембранный потенциал формируется за счет избирательной проницаемости клеточной мембраны. Как известно, плазмолемма состоит из липидного бислоя, через который движение заряженных молекул затруднено. Белки, встроенные в мембрану, могут избирательно изменять проницаемость мембраны для различных ионов, в зависимости от приходящих стимулов. При этом, для формирования потенциала покоя ведущую роль играют ионы калия, кроме них важны ионы натрия и хлора.

Читайте также:  Пульс 78 ударов в минуту это нормально у женщин

Рис. 1. Концентрации и распределение ионов с внутренней и внешней стороны мембраны.

Большинство ионов распределяются неравномерно с внутренней и внешней стороны клетки (рис. 1). Внутри клетки концентрация ионов калия выше, а натрия и хлора – ниже, чем снаружи. В состоянии покоя мембрана проницаема для ионов калия и практически непроницаема для ионов натрия и хлора. Несмотря на то, что калий может свободно выходить из клетки, его концентрации остаются неизменными благодаря отрицательному заряду на внутренней стороне мембраны. Таким образом, на калий действуют две силы, находящиеся в равновесии: осмотические (градиент концентрации К + ) и электрические (заряд мембраны), благодаря чему число входящих в клетку ионов калия равно выходящим. Движение калия осуществляется через калиевые каналы утечки, открытые в состоянии покоя. Величину заряда мембраны, при которой ионы калия находятся в равновесии можно вычислить по уравнению Нернста:

где Ек — равновесный потенциал для К + ; R — газовая постоянная; Т — абсолютная температура; F — число Фарадея; n — валентность К + (+1), [К + н] — [К + вн] — наружная и внутренняя концентрации К + .

Если подставить в уравнение значения из таблицы на рис. 43, то мы получим величину равновесного потенциала, равную примерно -95 мВ. Это значение вписывается в диапазон мембранного потенциала возбудимых клеток. Отличия ПП разных клеток (даже возбудимых) могут возникать по трем причинам:

  • отличия внутриклеточной и внеклеточной концентраций ионов калия в разных тканях (в таблице приведены данные по среднестатистическому нейрону);
  • натрий-калиевая АТФаза может вносить свой вклад в значение заряда, так как она выводит из клетки 3 Na + в обмен на 2 К + ;
  • несмотря на минимальную проницаемость мембраны для натрия и хлора, эти ионы все-таки могут попадать в клетки, хоть и от 10 до 100 раз хуже, по сравнению с калием.

Чтобы учесть проникновение других ионов в клетку существует уравнение Нернста-Гольдмана:

, где Еm — мембранный потенциал; R — газовая постоянная; Т — аб­солютная температура; F — число Фарадея; РK , PNa и РCl константы проницаемости мембраны для К + Na + и Сl, соответственно; + н], [K + вн], [Na + н], [Na + вн], [Сl — н] и [Сl — вн ]- концентрации K + , Na + и Сl снаружи (н) и внутри (вн) клетки.

Такое уравнение позволяет установить более точную величину ПП. Обычно, мембрана оказывается на несколько мВ менее поляризована, по сравнению с равновесным потенциалом для К + .

Потенциал действия (ПД) может возникать в возбудимых клетках. Если на нерв или мышцу нанести раздражение выше порога возбуждения, то ПП нерва или мышцы быстро уменьшится и на короткий промежуток времени (миллисекунда) произойдет кратковременная перезарядка мембраны: ее внутренняя сторона станет заряженной положительно относительно наружной, после чего восстановится ПП. Это кратковременное изменение ПП, происходящее при возбуждении клетки называется потенциалом действия.

Возникновение ПД возможно благодаря тому, что в отличие от ионов калия, ионы натрия далеки от равновесия. Если подставить в уравнение Нернста натрий вместо калия, то мы получим равновесный потенциал, равный примерно +60 мВ. Во время ПД, происходит кратковременное увеличение проницаемости для Na + . При этом, натрий начнет проникать в клетку под действием двух сил: по градиенту концентрации и по заряду мембраны, стремясь подстроить заряд мембраны под свой равновесный потенциал. Движение натрия осуществляется по потенциал-зависимым натриевым каналам, которые открываются в ответ на смещение мембранного потенциала, после чего сами инактивируются.

Рис. 2. Потенциал действия нервного волокна (А) и изменение проводимости мембраны для ионов натрия и калия (Б).

На записи ПД выглядит как кратковременный пик (рис. 44), имеющий несколько фаз.

  1. Деполяризация (фаза нарастания) (рис. 44) – увеличение проницаемости для натрия из-за открытия натриевых каналов. Натрий стремится к своему равновесному потенциалу, но не достигает его, так как канал успевает инактивироваться.
  2. Реполяризация – возвращение заряда к величине потенциала покоя. Помимо калиевых каналов утечки здесь подключаются потенциал-зависимые калиевые каналы (активируются от деполяризации). В это время калий выходит из клетки, возвращаясь к своему равновесному потенциалу.
  3. Гиперполяризация (не всегда) – возникает в случаях, если равновесный потенциал по калию превышает по модулю ПП. Возвращение к ПП происходит после возвращения к равновесному потенциалу по К + .

Во время ПД происходит изменение полярности заряда мембраны. Фаза ПД, при которой заряд мембраны положителен, называется овершутом (рис. 2).

Для генерации ПД оказывается очень важной система активации и инактивации потенциал-управляемых натриевых каналов (рис. 3). Эти каналы имеют две створки: активационную (М-ворота) и инактивационную (Н-ворота). В состоянии покоя М-ворота открыты, а Н-ворота закрыты. Во время деполяризации мембраны М-ворота быстро открываются, а Н-ворота начинают закрываться. Ток натрия в клетку возможен пока М-ворота уже открыты, а Н-ворота еще не закрылись. Вход натрия приводит к дальнейшей деполяризации клетки, приводя к открытию большего количества каналов и запуская цепочку положительной обратной связи. Деполяризация мембраны будет продолжаться до тех пор, пока все потенциал-управляемые натриевые каналы не окажутся инактивированными, что происходит на пике ПД. Минимальная величина стимула, приводящая к возникновению ПД называется пороговой. Таким образом, возникший ПД будет подчиняться закону «все или ничего» и его величина не будет зависеть от величины стимула, вызвавшего ПД.

Благодаря Н-воротам инактивация канала происходит раньше, чем потенциал на мембране достигнет равновесной величины по натрию. После прекращения поступления натрия в клетку, происходит реполяризация за счет выходящих из клетки ионов калия. При этом к каналам утечки в этом случае подключаются еще и потениал-активируемые калиевые каналы. Во время реполяризации, в быстром натриевом канале быстро закрываются М-ворота. Н-ворота открываются гораздо медленнее и остаются закрытыми еще некоторое время после возвращения заряда к потенциалу покоя. Этот период принято называть периодом рефрактерности.

Рис. 3. Работа потенциал-управляемого натриевого канала.

Концентрации ионов внутри клетки восстанавливает натрий-калиевая АТФаза, которая с затратой энергии в виде АТФ откачивает из клетки 3 иона натрия и закачивает 2 иона калия.

По немиелинизированному волокну или по мембране мышцы потенциал действия распространяется непрерывно. Возникший потенциал действия за счет электрического поля способен деполяризовать мембрану соседнего участка до порогового значения, в результате чего на соседнем участке возникает деполяризация. Главную роль в возникновении потенциала на новом участке мембраны предыдущий участок. При этом на каждом участки сразу после ПД наступает период рефрактерности, за счет которое ПД распространяется однонаправленно. При прочих равных условиях распространение потенциала действия по немиелинизированному аксону происходит тем быстрее, чем больше диаметр волокна. У млекопитающих скорость составляет 1-4 м/с. Поскольку у беспозвоночных животных отсутствует миелин, в гигантских аксонах кальмара скорость ПД может достигать 100 м/c.

По миелинизированному волокну потенциал действия распространяется скачкообразно (сальтаторное проведение). Для миелинизированных волокон характерна концентрация потенциалзависимых ионных каналов только в областях перехватов Ранвье; здесь их плотность в 100 раз больше, чем в мембранах немиелинизированных волокон. В области миелиновых муфт потенциалзависимых каналов почти нет. Потенциал действия, возникший в одном перехвате Ранвье, за счет электрического поля деполяризует мембрану соседних перехватов до порогового значения, что приводит к возникновению в них новых потенциалов действия, то есть возбуждение переходит скачкообразно, от одного перехвата к другому. В случае повреждения одного перехвата Ранвье потенциал действия возбуждает 2-й, 3-й, 4-й и даже 5-й, поскольку электроизоляция, создаваемая миелиновыми муфтами, уменьшает рассеивание электрического поля. Сальтаторное проведение увеличивает скорость проведения ПД 15-20 раз до 120 м/с.

Работа нейронов

Нервная система состоит из нейронов и глиальных клеток. Однако, главную роль в проведении и передаче нервных импульсов играют нейроны. Они получают информацию от множества клеток по дендритам, анализируют ее и передают или не передают на следующий нейрон.

Передача нервного импульса с одной клетки на другую осуществляется с помощью синапсов. Различают два основных типа синапсов: электрические и химические (рис. 4). Задача любого синапса – передать информацию с пресинаптической мембраны (мембрана аксона) на постсинаптическую (мембрана дендрита, другого аксона, мышцы или другого органа-мишени). Большинство синапсов нервной системы образуется между окончанием аксонов и дендритами, которые в области синапса образуют дендритные шипики.

Преимущество электрического синапса состоит в том, что сигнал с одной клетки на другую переходит без задержки. Кроме того, такие синапсы не утомляются. Для этого пре- и постсинаптические мембраны соединены поперечными мостиками, через которые ионы из одной клетки могут перемещаться в другую. Однако, существенным минусом такой системы является отсутствие однонаправленной передачи ПД. То есть, он может передаваться как с пресинаптической мембраны на постсинаптическую, так и наоборот. Поэтому, такая конструкция встречается достаточно редко и в основном – в нервной системе беспозвоночных.

Рис. 4. Схема строения химического и электрического синапсов.

Химический синапс весьма распространен в природе. О устроен сложнее, так как необходима система преобразования электрического импульса в химический сигнал, затем, вновь в электрический импульс. Все это приводит к возникновению синаптической задержки, которая может составить 0,2-0,4 мс. Кроме того, может произойти истощение запасов химического вещества, что приведет к утомлению синапса. Однако, такой синапс обеспечивает однонаправленность передачи ПД, что является его главным преимуществом.

Рис. 5. Схема работы (а) и электронная микрофотография (б) химического синапса.

В состоянии покоя окончание аксона, или пресинаптическое окончание, содержит мембранные пузырьки (везикулы) с нейромедиатором. Поверхность везикул заряжена отрицательно, чтобы предотвратить связывание с мембраной, и покрыта специальными белками, и принимающими участие в высвобождении везикул. В каждом пузырьке находится одинаковое количество химического вещества, которое называется квантом нейромедиатора. Нейромедиаторы весьма разнообразны по химическому строению, однако, большинство из них производятся прямо в окончании. Поэтому, в нем могут находиться системы, для синтеза химического посредника, а также аппарат Гольджи и митохондрии.

Постсинаптическая мембрана содержит рецепторы к нейромедиатору. Рецепторы могут быть в виде как ионных каналов, открывающихся при контакте со своим лигандом (ионотропные), так и мембранными белками, запускающими внутриклеточный каскад реакций (метаботропные). Один нейромедиатор может иметь несколько как ионотропных, так и метаботропных рецепторов. При этом, часть из них может быть возбуждающими, а часть – тормозными. Таким образом, реакцию клетки на нейромедиатор будет определять тип рецептора на ее мембране, и разные клетки могут совершенно по-разному реагировать на одно и то же химическое вещество.

Между пре- и постсинаптической мембраной располагается синаптическая щель, шириной 10-15 нм.

При приходе ПД на пресинаптическое окончание, на нем открываются потенциал-активируемые кальциевые каналы и ионы кальция входят в клетку. Кальций связывается с белками на поверхности везикул, что приводит к их транспортировке к пресинаптической мембране с последующим слиянием мембран. После такого взаимодействия нейромедиатор оказывается в синаптической щели (рис. 5) и может связаться со своим рецептором.

Ионотропные рецепторы – это лиганд-активируемые ионные каналы. Это значит, что канал открывается только в присутствии определенного химического вещества. Для разных нейромедиаторов это могут быть натриевые, кальциевые или хлорные каналы. Ток натрия и кальция вызывает деполяризацию мембраны, поэтому такие рецепторы называют возбуждающими. Хлорный ток приводит к гиперполяризации, что затрудняет генерацию ПД. Следовательно, такие рецепторы называют тормозными.

Метаботропные рецепторы к нейромедиаторам относят к классу рецепторов, ассоцированных с G-белками (GPCR). Эти белки запускают разнообразные внутриклеточные каскады реакций, приводящих в конечном итоге либо к дальнейшей передачи возбуждения, либо к торможению.

После передачи сигнала необходимо быстро удалить нейромедиатор из синаптической щели. Для этого в щели присутствуют либо ферменты расщепляющие, нейромедиатор, либо на пресинаптическом окончании или соседних глиальных клетках могут располагаться транспортеры, закачивающие медиатор в клетки. В последнем случае он может использоваться повторно.

Каждый нейрон получает импульсы от 100 до 100 000 синапсов. Одиночная деполяризация на одном дендрите не приведет к дальнейшей передаче сигнала. На нейрон могут приходит одновременно множество как возбуждающих, так и тормозных стимулов. Все они суммируются на соме нейрона. Такая суммация называется пространственной. Далее, может возникнуть или не возникнуть (в зависимости от пришедших сигналов) ПД в области аксонного холмика. Аксонный холмик – это область аксона, примыкающая к соме и обладающая минимальным порогом ПД. Далее импульс распространяется по аксону, конец которого может сильно ветвиться и образовывать синапсы со множеством клеток. Помимо пространственной, существует временная суммация. Она происходит в случае, поступления часто повторяющихся импульсов от одного дендрита.

Читайте также:  Пульс 120 что делать а давление низкое

Помимо классических синапсов между аксонами и дендритами или их шипиками, существуют также синапсы, модулирующие передачу в других синапсах (рис. 6). К ним относят аксо-аксональные синапсы. Такие синапсы способны усиливать или тормозить синаптическую передачу. То есть, если на окончание аксона, образующего аксо-шипиковый синапс, пришел ПД, а в это время по аксо-аксональному синапсу на него пришел тормозный сигнал, высвобождения нейромедиатора в аксо-шипиковом синапсе не произойдет. Аксо-дендритные синапсы могут изменять проведение мембраной ПД на пути от шипика к соме клетки. Также существуют аксо-соматические синапсы, которые могут влиять на суммацию сигнала в области сомы нейрона.

Таким образом, существует огромное многообразие различных синапсов, отличающихся по составу нейромедиаторов, рецепторов и их местоположению. Все это обеспечивает разнообразие реакций и пластичность нервной системы.

Рис. 6. Разнообразие синапсов в нервной системе.

2. Основные понятия / Физиология возбуждения

2. СПИСОК ОСНОВНЫХ ПОНЯТИЙ ПО ТЕМЕ «ФИЗИОЛОГИЯ ПРОЦЕССА ВОЗБУЖДЕНИЯ»

1. K Na –насос (синонимы: Na-K насос, натрий-калиевый насос, натрий-калиевый обменник) – белковый механизм в структуре клеточной мембраны, обеспечивающий активный транспорт ионов натрия из клетки наружу, а ионов калия, наоборот, внутрь. Транспорт ионов проходит в виде обмена в отношении 3 Na : 2 K с затратой энергии 1 молекулы АТФ. Этот насос представляет из себя особый мембранный фермент под названием Na,K-АТФаза .

2. Активационные ворота – белковые структуры в составе ионных каналов для натрия, обеспечивающие его поступление в клетку. (Устаревшая гипотеза.)

3. Активная деполяризация – процесс деполяризации (уменьшения поляризованности) клеточной мембраны за счет перемещения положительных ионов натрия внутрь клетки. Электроотрицательность внутри клетки при этом уменьшается.

4. Активный транспорт веществ – перемещение веществ против градиента концентрации (от меньшей концентрации к большей) с затратами энергии.

5. Анион – отрицательно заряженный ион. Например, ион хлора: Cl¯.

6 . Возбудимость – способность живого образования отвечать на воздействия раздражителя процессом возбуждения.

7. Возбуждение – активный физиологический процесс в ответ на действие раздражителя, сопровождающийся биоэлектрическими, биохимическими, морфологическими изменениями и приводящий к возникновению специфической функции.

8. Волна возбуждения (распространяющееся возбуждение) – процесс перемещения возбуждения по клеточной мембране.

9. Гиперполяризация – процесс увеличения отрицательного значения поляризации клеточной мембраны, в сравнении с состоянием относительного физиологического покоя. (Рост электроотрицательности мембраны.)

10. Деполяризация – процесс уменьшения отрицательного значения поляризации клеточной мембраны, в сравнении с состоянием относительного физиологического покоя. (Уменьшение электроотрицательности мембраны.)

11. Инактивационные ворота – белковые структуры в составе ионных каналов для натрия, прекращающие поступление его в клетку. (Устаревшая гипотеза.)

12. Катион – положительно заряженный ион. Например, ионы натрия, калия, кальция: Na + , K + , Ca² + .

13. Критический потенциал (он же КУД – критический уровень деполяризации) – минимальная величина, до которой нужно изменить мембранный потенциал, чтобы возник одиночный приступ возбуждения (потенциал действия).

14. Лабильность (функциональная подвижность) – способность возбудимого образования отвечать на ритмическое воздействие максимальным количеством ответных реакций без искажения ритма.

15. Латентный период (скрытый период) – время от момента воздействия раздражителя, до начала ответной реакции.

16. Локальный ответ – форма ответной реакции возбудимого образования на действие раздражителя, не способного довести деполяризацию до критического уровня.

17. Максимальная сила раздражителя – минимальная сила раздражителя впервые вызывающая максимальную ответную реакцию; минимальная сила раздражителя, которая впервые доводит деполяризацию до критического уровня за наименьшее время.

18. Максимальный ритм раздражения – максимальное количество воздействий, которое возбудимое образование может воспроизвести без искажений, при неограниченной силе раздражителя. Это показатель лабильности.

19. Мембранный потенциал (потенциал покоя) – величина поляризации клеточной мембраны в состоянии физиологического покоя.

20. Одиночный приступ возбуждения (потенциал действия) – такое изменение поляризации определенного участка клеточной мембраны, которое способно вызвать подобные изменения на соседних участках.

21. Оптимальный ритм раздражения – ритм воздействия раздражителя, воспроизводимый возбудимым образованием без искажений с наименьшими затратами.

22. Пассивная деполяризация – процесс деполяризации, вызванный за счет свойств раздражителя.

23. Пассивный (электротонический) потенциал – величина, характеризующая пассивную деполяризацию.

24. Пассивный транспорт веществ – перемещение веществ по градиенту концентрации (от большей концентрации к меньшей) без затрат энергии.

25. Пессимальный ритм раздражения – ритм воздействия раздражителя, воспроизводимый с искажениями.

26. Подпороговая сила раздражителя – сила раздражителя меньше пороговой. Она не способна породить нервный импульс или мышечную ответную реакцию.

27. Полезное время – время необходимое для получения ответной реакции при воздействии раздражителя силой в одну реобазу.

28. Порог времени – время необходимое для получения ответной реакции при воздействии раздражителя неограниченно большой силы.

29. Пороговая сила раздражителя – минимальная сила раздражителя, впервые вызывающая минимальную ответную реакцию.

30. Пороговый потенциал – величина, на которую нужно изменить мембранный потенциал, чтобы получить одиночный приступ возбуждения (потенциал действия).

31. Потенциал действия – величина изменения поляризации клеточной мембраны, вызванная лавинообразным потоком натрия в клетку.

32. Раздражимость – свойство живого образования, лежащее в основе способности отвечать на действие раздражителя.

33. Раздражитель – изменение, возникающее во внешней или внутренней среде, которое органим способен воспринимать .

34. Реактивность – способность организма к адекватному ответу.

35. Реверсионный потенциал – величина, характеризующая положительный заряд клеточной мембраны при одиночном приступе возбуждения.

36. Реверсия – перезарядка клеточной мембраны.

37. Реобаза – минимальная сила раздражителя еще способная вызвать ответную реакцию при неограниченном времени его воздействия; минимальная сила раздражителя еще способная довести деполяризацию до критического уровня при неограниченном времени его воздействия.

38. Реполяризация – процесс восстановления исходной поляризации клеточной мембраны за счет перемещения ионов калия из клетки.

39. Рефрактерность – невозбудимость.

40. Сверхмаксимальная сила раздражителя – сила больше, чем максимальная.

41. Селективная воронка – структура ионного канала, обеспечивающая его избирательность (селективность).

42. Селективность (избирательность) ионного канала – свойство ионного канала пропускать только определенный вид ионов.

43. Субмаксимальная сила раздражителя – сила раздражителя, приближающаяся к максимальной.

44. Субнормальность – фаза понижения возбудимости участка клеточной мембраны, в результате следовой гиперполяризации.

45. Торможение – процесс угнетения или прекращения функционального отправления.

46. Физиологический покой – состояние возбудимого образования в отсутствии действия раздражителей.

47. Хемовозбудимые ионные каналы – ионные каналы, которые открываются при воздействии на них химических веществ (нейромедиаторов).

48. Хронаксия – время, необходимое раздражителю силой в две реобазы, чтобы вызвать ответную реакцию в виде одиночного приступа возбуждения; время, необходимое раздражителю силой в две реобазы, чтобы довести деполяризацию до критического уровня.

49. Экзальтация – повышенная возбудимость.

50. Электровозбудимые (потенциалзависимые) ионные каналы – ионные каналы, которые открываются при изменении поляризации клеточной мембраны.

51. Фаза абсолютной рефрактерности – фаза изменения возбудимости, во время которой воздействие раздражителя любой силы не дает ответной реакции. Полная “неотвечаемость” нейрона.

52. Фаза относительной рефрактерности – фаза изменения возбудимости, во время которой только воздействие раздражителя сверхпороговой силы дает ответную реакцию.

53. Фаза экзальтации – фаза изменения возбудимости, во время которой воздействие раздражителя любой силы (даже подпороговой) дает ответную реакцию.

Реполяризация сердца

Об электрической активности сердца заговорили еще в 19-м веке. Тогда стало известно, что во время работы сердца образуется некоторое количество электричества. С того времени и поныне существует прекрасная возможность оценивать процессы реполяризации и деполяризации сердца.

Анатомия проводящей системы

Проводящая система сердца

Довольно часто не только на слуху у медицинского работника, но и у явившегося на прием пациента встречается фраза «процессы реполяризации». А что же это такое по своей сути? Порой нехватка знаний заставляют пациента много думать, и плоды размышлений приводят его к необоснованным тревогам и печалям. А все из-за того, что отсутствует понимание простых истин электрофизиологии. Итак, наше сердце, обладая проводящей системой, имеет способность возбуждаться и возвращаться в состояние покоя. Такое определение является, конечно же, условным. Ведь этот орган работает 24 часа в сутки, а это значит, что никаких пауз в работе здорового сердца быть не должно.

Обратимся именно к его электрофизиологии. «От макушки до пят» наше сердце обеспечено проводящей системой, которая представлена узлами, пучками и волокнами. Структурной единицей этой системы является атипичная мышечная клеточка. Она содержит меньше сократительных элементов миофибрилл, но больше саркоплазмы — цитоплазмы, которая заполняет пространство между миофибриллами. Именно саркоплазма обеспечивает проведение возбуждающих импульсов внутри волокна. Даже внешне эти проводящие пути можно попытаться отличить невооруженным глазом — они немного бледнее.

Основы электрофизиологии

Структурная единица миокарда —
кардиомиоцит

Чтобы понять суть процессов реполяризации, логично рассмотреть все по порядку. Начнем с сердечной клетки — кардиомиоцита. Кардиомиоцит имеет мембрану, пронизанную порами (каналами), через которые проходят ионы. Встроенные каналы работают по-разному. Для работы одних требуется затрата энергии, для других нет такой необходимости, так как осуществляется пассивная диффузия ионов по градиенту концентрации. Мембрана отграничивает внутриклеточное пространство и межклеточную жидкость. Как внутри, так и извне клетки в определенной концентрации находятся ионы кальция, натрия, хлора, калия и др.

Клетка может находиться в состоянии покоя и в состоянии возбуждения. В состоянии покоя концентрация калия внутри кардиомиоцита в раз 30-35 превышает таковую извне. Концентрация же ионов натрия наоборот в 10-20 раз выше снаружи по сравнению с внутриклеточной средой. В состоянии покоя мембрана непроницаема для ионов натрия, и частично проницаема для ионов калия. Нахождение ионов внутри и вне клетки обеспечивает суммарный заряд. В фазе покоя клетка заражена отрицательно, внеклеточное пространство имеет положительный заряд. Если к клетке подходит электрический импульс, происходит активация каналов (пор) в мембране кардиомиоцита.

Процессы деполяризации и реполяризации в клетке

Прежде всего, активируются кальциевые и натривые каналы, которые отвечают за возбуждение кардиомиоцита. В результате быстрого поступления внутрь ионов кальция и натрия, кардиомиоцит приобретает положительный заряд. Эта фаза называется деполяризацией. После того, как ионы кальция и натрия поступили в клетку, начинается восстановление заряда — процесс реполяризации. Несмотря на то, что ионы кальция продолжают медленно поступать в клетку, каналы, пропускающие натрий, закрываются. Далее происходит открытие активных калиевых каналов, и закрытие каналов для кальция.

В результате восстанавливается исходный заряд мембраны. Клеточная мембрана из фазы реполяризации переходит в состояние покоя. Кардиомиоцит является структурной единицей сердца. Мы коснулись лишь проводящих (атипичных) кардиомиоцитов, которые являются частью проводящей системы. Существует еще два типа клеток — секреторные и сократительные. Секреторные клетки располагаются преимущественно в правом предсердии и секретируют натрийуретический фактор (ПНФ). Сократительные образуют основную массу миокарда, обеспечивающую одну из основных функций сердца — сократимость.

Нарушение реполяризации

Синдром ранней реполяризации желудочков

По каким-то причинам может иметь место нарушение процессов реполяризации. Это означает то что есть проблема с восстановлением заряда. Клетка не успевает «передохнуть» перед очередным возбуждением. Этому могут способствовать разные причины. Прием лекарственных препаратов, стимулирующих симпатическую нервную систему, может стать причиной развития синдрома ранней реполяризации желудочков. Заболевания соединительной ткани (коллагенозы), кардиомиопатия, пороки сердца, ишемическая болезнь сердца, гипертрофия миокарда и другие факторы могут приводить к нарушениям процессов реполяризации.

Клинически это может проявлять себя симптомами основного заболевания, или же регистрироваться только на электрокардиограмме. Однако, как бы не обстояли дела с Вашим самочувствием, стоит обратиться на консультацию к врачу. Будьте здоровы!


Ссылка на основную публикацию